Bioarchaeological and palaeogenomic portrait of two Pompeians that died during the eruption of Vesuvius in 79 AD

  • Sigurdsson, H., Carey, S., Cornell, W. & Pescatore, T. The eruption of vesuvius in Ad 79. Natl. Geogr. Res. 1, 332–387 (1985).

    Google Scholar 

  • Luongo, G. et al. Impact of the AD 79 explosive eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties. J. Volcanol. Geotherm. Res. 126, 169–200 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Martyn, R. et al. A re-evaluation of manner of death at Roman Herculaneum following the AD 79 eruption of Vesuvius. Antiquity 94, 76–91 (2020).

    Article 

    Google Scholar 

  • Scorrano, G. et al. Methodological strategies to assess the degree of bone preservation for ancient DNA studies. Ann. Hum. Biol. 42, 10–19 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Matsuo, S., Toyokumi, S., Osaka, M., Hamazaki, S. & Sugiyama, T. Degradation of DNA in dried tissues by atmospheric oxygen. Biochem. Biophys. Res. Commun. 208, 1021–1027 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cipollaro, M. et al. Ancient DNA in human bone remains from Pompeii archaeological site. Biochem. Biophys. Res. Commun. 247, 901–904 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Di Bernardo, G., Del Gaudio, S., Galderisi, U. & Cipollaro, M. 2000 Year-old ancient equids: An ancient-DNA lesson from pompeii remains. J. Exp. Zool. B Mol. Dev. Evol. 302, 550–556 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Di Bernardo, G. et al. Genetic characterization of Pompeii and Herculaneum Equidae buried by Vesuvius in 79 AD. J. Cell. Physiol. 199, 200–205 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guarino, F. M. et al. Recovery and amplification of ancient DNA from Herculaneum victims killed by the 79 AD Vesuvius hot surges. Turk. J. Biol. 41, 640–648 (2017).

    CAS 
    Article 

    Google Scholar 

  • Di Bernardo, G., Del Gaudo, S., Galderisi, U., Cascino, A. & Cipollaro, M. Ancient DNA and family relationships in a Pompeian house. Ann. Hum. Gen. 73, 429–437 (2009).

    Article 
    CAS 

    Google Scholar 

  • Cipollaro, M. et al. Histological analysis and ancient DNA amplification of human bone remains found in Caius iulius polybius house in pompeii. Croat. Med. J. 40, 392–397 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Di Bernardo, G. et al. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains. Nucleic Acids Res. 30, e16 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hansen, H. B. et al. Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS One 12, e0170940 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dellino, P., Dioguardi, F., Isaia, R., Sulpizio, R. & Miele, D. The impact of pyroclastic density currents duration on humans: The case of the AD 79 eruption of Vesuvius. Sci. Rep. 11, 4959 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearson, K. Mathematical contribution to the theory of evolution. On the reconstruction of the stature of prehistoric races. Philos. Trans. R. Soc. A. 192, 169–244 (1899).

    ADS 
    MATH 

    Google Scholar 

  • Trotter, M. & Gleser, G. C. Estimation of stature from long bones of American Whites and Negroes. Am. J. Phys. Anthropol. 10, 463–514 (1952).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Trotter, M. & Gleser, G. C. A re-evaluation of estimation of stature based on measurements of stature taken during life and of long bones after death. Am. J. Phys. Anthropol. 16, 79–123 (1958).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Trotter, M. & Gleser, G. C. Estimation of stature from long limb bones of American Whites and Negroes—Reply. Am. J. Phys. Anthropol. 47, 355–356 (1977).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Giannecchini, M. & Moggi-Cecchi, J. Stature in archeological samples from central Italy: Methodological issues and diachronic changes. Am. J. Phys. Anthropol. 135, 284–292 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Henneberg, M. & Henneberg, R. J. Reconstructing medical knowledge in ancient Pompeii from the hard evidence of bones and teeth. In Homo Faber: Studies on Nature, Technology, and Science at the Time of Pompeii (eds. Renn, J. & Castagnetti, G.) 169–187 (L’Erma di Bretschneider, 2002).

  • Becker, M. & Capasso, L. I fuggiaschi di Ercolano: paleobiologia delle vittime dell’eruzione vesuviana del 79 dC, Roma. J. Rom. Stud. 93, 404–406 (2001).

    Google Scholar 

  • Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Paabo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One 7, e34131 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482 (2013).

    CAS 
    Article 

    Google Scholar 

  • Weissensteiner, H. et al. HaploGrep 2: Mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58-63 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Oven, M. PhyloTree Build 17: Growing the human mitochondrial DNA tree. Forens Sci. Int.-Gen. S. 5, E392–E394 (2015).

    Google Scholar 

  • Antonio, M. L. et al. Ancient Rome: A genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hervella, M. et al. Ancient DNA from hunter-gatherer and farmer groups from Northern Spain supports a random dispersion model for the neolithic expansion into Europe. PLoS One 7, e34417 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mannino, M. A. et al. Origin and diet of the prehistoric hunter-gatherers on the mediterranean island of Favignana (Egadi Islands, Sicily). PLoS One 7, e49802 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richards, M. B., Macaulay, V. A., Bandelt, H. J. & Sykes, B. C. Phylogeography of mitochondrial DNA in western Europe. Ann. Hum. Genet. 62, 241–260 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shamoon-Pour, M., Li, M. & Merriwether, D. A. Rare human mitochondrial HV lineages spread from the Near East and Caucasus during post-LGM and Neolithic expansions. Sci. Rep. 9, 14751 (2019).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Fanti, S. et al. Fine dissection of human mitochondrial DNA haplogroup HV lineages reveals paleolithic signatures from European glacial refugia. PLoS One 10, e0144391 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scorrano, G. et al. The genetic landscape of Serbian populations through mitochondrial DNA sequencing and non-recombining region of the Y chromosome microsatellites. Coll. Antropol. 41, 275–296 (2017).

    Google Scholar 

  • Fraumene, C. et al. High resolution analysis and phylogenetic network construction using complete mtDNA sequences in Sardinian genetic isolates. Mol. Biol. Evol. 23, 2101–2111 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cinnioglu, C. et al. Excavating Y-chromosome haplotype strata in Anatolia. Hum. Genet. 114, 127–148 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Luis, J. R. et al. The Levant versus the Horn of Africa: Evidence for bidirectional corridors of human migrations. Am. J. Hum. Genet. 74, 532–544 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francalacci, P. et al. Low-pass DNA sequencing of 1200 Sardinians reconstructs European Y-chromosome phylogeny. Science 341, 565–569 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • D’Atanasio, E. et al. The peopling of the last Green Sahara revealed by high-coverage resequencing of trans-Saharan patrilineages. Genome Biol. 19, 1–15 (2018).

    Article 

    Google Scholar 

  • Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Catalano, G. et al. Late Upper Palaeolithic hunter-gatherers in the Central Mediterranean: New T archaeological and genetic data from the Late Epigravettian burial Oriente C (Favignana, Sicily). Quat. Int. 537, 24–32 (2020).

    Article 

    Google Scholar 

  • de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernandes, D. M. et al. The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat. Ecol. Evol. 4, 334–345 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fregel, R. J. et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc. Natl. Acad. Sci. USA 115, 6774–6779 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furtwängler, A. et al. Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1–11 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gallego-Llorente, M. et al. The genetics of an early Neolithic pastoralist from the Zagros, Iran. Sci. Rep. 6, 31326 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hofmanova, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. USA 113, 6886–6891 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Keller, A. et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3, 698 (2012).

    ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kilinc, G. M. et al. The demographic development of the first farmers in anatolia. Curr. Biol. 26, 2659–2666 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcus, J. H. et al. Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 11, 939 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mittnik, A. et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mittnik, A. et al. Kinship-based social inequality in Bronze Age Europe. Science 366, 731–734 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).

    ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Posth, C. et al. The origin and legacy of the Etruscans through a 2000-year archeogenomic time transect. Sci. Adv. 7, eabi7673 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scorrano, G., Eylem Yediay, F., Pinotti, T., Feizabadifarahan, M. & Kristiansen, K. The genetic and cultural impact of the Steppe migration into Europe. Ann. Hum. Biol. 48, 223–233 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Saupe, T. et al. Ancient genomes reveal structural shifts after the arrival of Steppe-related ancestry in the Italian Peninsula. Curr. Biol. 31, 2576–2591 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ortner, D. J. Identification of Pathological Conditions in Human Skeletal Remains (Academic Press, 2003).

    Google Scholar 

  • Rothschild, B., Naples, V. & Barbian, L. Bone manifestations of actinomycosis. Ann. Diagn. Pathol. 10, 24–27 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Robbins, S. L. & Cotran, R. S. Pathologic Basis of Disease (Elsevier, 2002).

    Google Scholar 

  • Marson, P. & Rippa Bonatti, M. Today’s rheumatological paleopathology. Reumatismo 55, 1–4 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Roberts, C. & Buikstra, J. E. The Bioarchaeology of Tuberculosis. A Global View on a Reemerging Disease. (University Press of Florida, 2003).

  • Margaryan, A. et al. Ancient pathogen DNA in human teeth and petrous bones. Ecol. Evol. 8, 3534–3542 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, D. et al. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257–269 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shenai, S. et al. Exploring alternative biomaterials for diagnosis of pulmonary tuberculosis in HIV-negative patients by use of the GeneXpert MTB/RIF assay. J. Clin. Microb. 51, 4161–4166 (2013).

    Article 

    Google Scholar 

  • Wood, R. et al. Detection of Mycobacterium tuberculosis DNA on the oral mucosa of tuberculosis patients. Sci. Rep. 5, 8668 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mesman, A. et al. Molecular detection of Mycobacterium tuberculosis from buccal swabs among adults in Peru. Sci. Rep. 10, 22231 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borowka, P. et al. Screening methods for detection of ancient Mycobacterium tuberculosis complex fingerprints in next-generation sequencing data derived from skeletal samples. GigaScience 8, giz065 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Angelis, F. et al. Mitochondrial variability in the Mediterranean area: A complex stage for human migrations. Ann. Hum. Biol. 45, 5–19 (2018).

    Article 
    PubMed 

    Google Scholar 

  • O’connell, T. C. et al. Living and dying at the Portus Romae. Antiquity 93, 719–734 (2019).

    Article 

    Google Scholar 

  • Emery, M. V. et al. Ancient Roman mitochondrial genomes and isotopes reveal relationships and geographic origins at the local and pan-Mediterranean scales. J. Archaeol. Sci. Rep. 20, 200–209 (2018).

    Google Scholar 

  • Moatti, C. Translation, migration, and communication in the Roman Empire: Three aspects of movement in history. Class. Antiq. 25, 109–140 (2006).

    Article 

    Google Scholar 

  • Canci, A. et al. A case of healing spinal infection from Classical Rome. Int. J. Osteoarchaeol. 15, 77–83 (2005).

    Article 

    Google Scholar 

  • Eddy, J. J. The ancient city of Rome, its empire, and the spread of tuberculosis in Europe. Tuberculosis 95, S23-28 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Minozzi, S., Catalano, P., Caldarini, C. & Fornaciari, G. Palaeopathology of human remains from the Roman Imperial Age. Pathobiology 79, 268–283 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Murail, P., Bruzeki, J., Houēt, F. & Cunha, E. DSP: A tool for probabilistic sex diagnosis using worldwide variability in hip bone measurement. Bullettins et Mèmoires de la Société d’ Anthropologie de Paris 17, 167–176 (2005).

    Google Scholar 

  • Todd, T. W. Age changes in the Pubic Bone VI. The interpretation of variations in the symphysial area. Am. J. Phys. Anthropol. 4, 407–424 (1921).

    Article 

    Google Scholar 

  • Buckberry, J. L. & Chamberlain, A. T. Age estimation from the auricular surface of the ilium: Arevised method. Am. J. Phys. Anthropol. 119, 231–239 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold. Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Lindgreen, S. AdapterRemoval: Easy cleaning of next-generation sequencing reads. BMC. Res. Notes. 5, 337 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jonsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of next generation sequencing data. BMC Bioinform. 15, 356 (2014).

    Article 

    Google Scholar 

  • Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martiniano, R., De Sanctis, B., Hallast, P. & Durbin, R. Placing ancient DNA inot reference phylogenies. bioRxiv https://doi.org/10.1101/2020.12.19.423614 (2020).

    Article 

    Google Scholar 

  • Poznik, G. D. et al. Sequencing Y chromosomes resolves discrepancy in time to common ancestor of males versus females. Science 341, 562–565 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4, 7–22 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Langmead, B. & Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mühlemann, B. et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science 369, eaaw8977 (2021).

    Article 
    CAS 

    Google Scholar 

  • Leave a Comment